Visualizing Two Qualitative Variables
Bonds
A dataset for illustrating the various available visualizations needs a certain degree of richness with manageable size. The dataset on Bonds contains three categorical and a few quantitative indicators sufficient to show what we might wish.
Loading the Data
Bonds <- read.csv(url("https://raw.githubusercontent.com/robertwwalker/DADMStuff/master/BondFunds.csv"))
A Summary
library(skimr)
Bonds %>%
    skim()
| Name | Piped data | 
| Number of rows | 184 | 
| Number of columns | 9 | 
| _______________________ | |
| Column type frequency: | |
| character | 4 | 
| numeric | 5 | 
| ________________________ | |
| Group variables | None | 
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace | 
|---|---|---|---|---|---|---|---|
| Fund.Number | 0 | 1 | 4 | 6 | 0 | 184 | 0 | 
| Type | 0 | 1 | 20 | 23 | 0 | 2 | 0 | 
| Fees | 0 | 1 | 2 | 3 | 0 | 2 | 0 | 
| Risk | 0 | 1 | 7 | 13 | 0 | 3 | 0 | 
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist | 
|---|---|---|---|---|---|---|---|---|---|---|
| Assets | 0 | 1 | 910.65 | 2253.27 | 12.40 | 113.72 | 268.4 | 621.95 | 18603.50 | ▇▁▁▁▁ | 
| Expense.Ratio | 0 | 1 | 0.71 | 0.26 | 0.12 | 0.53 | 0.7 | 0.90 | 1.94 | ▂▇▅▁▁ | 
| Return.2009 | 0 | 1 | 7.16 | 6.09 | -8.80 | 3.48 | 6.4 | 10.72 | 32.00 | ▁▇▅▁▁ | 
| X3.Year.Return | 0 | 1 | 4.66 | 2.52 | -13.80 | 4.05 | 5.1 | 6.10 | 9.40 | ▁▁▁▅▇ | 
| X5.Year.Return | 0 | 1 | 3.99 | 1.49 | -7.30 | 3.60 | 4.3 | 4.90 | 6.80 | ▁▁▁▅▇ | 
Most data types are represented. There is no time variable so dates and the visualizations that go with time series are omitted.
Data Visualization
There are three primary visualizations that we might use for a combination of two qualities. We will have a look at geom_tile(), geom_point(), and geom_bar(aes(fill=)) to visualize these. We can also make use of facet. Let me work with Risk and Fees. I will first display the relevant table.
Building a Table
BTDF <- Bonds %>%
    group_by(Risk, Fees) %>%
    summarise(Count = n()) %>%
    data.frame()
## `summarise()` has grouped output by 'Risk'. You can override using the `.groups` argument.
BTDF %>%
    pivot_wider(names_from = Fees, values_from = Count)
## # A tibble: 3 × 3
##   Risk             No   Yes
##   <chr>         <int> <int>
## 1 Above average    37    22
## 2 Average          49    20
## 3 Below average    44    12
The table as a data.frame.
BTDF
##            Risk Fees Count
## 1 Above average   No    37
## 2 Above average  Yes    22
## 3       Average   No    49
## 4       Average  Yes    20
## 5 Below average   No    44
## 6 Below average  Yes    12
geom_tile
BTDF %>%
    ggplot(., aes(x = Risk, y = Fees, fill = Count)) + geom_tile() + scale_fill_viridis_c() +
    theme_minimal() + labs(fill = "Number of Funds")

geom_label a visual table
BTDF %>%
    ggplot(., aes(x = Risk, y = Fees, label = Count)) + geom_label() + theme_minimal() +
    labs(subtitle = "Counts of Funds Shown")

A Tile Table
BTDF %>%
    ggplot(., aes(x = Risk, y = Fees, label = Count, fill = Count)) + geom_tile(alpha = 0.2) +
    scale_fill_viridis_c() + geom_text() + theme_minimal() + labs(subtitle = "Counts of Funds Shown")

Raw Data Plots
geom_count()
Bonds %>%
    ggplot() + aes(x = Risk, y = Fees) + geom_count() + theme_minimal()

geom_bar(fill=)
Now let us look at the bar plot. First, start with Risk.
Bonds %>%
    ggplot() + aes(x = Risk) + geom_bar()

To add Fees to the plot, we can fill the bars.
Bonds %>%
    ggplot() + aes(x = Risk, fill = Fees) + geom_bar()

Conditional Probability: (position="fill")
We can also plot this normalized by the number in each category of x so that the plots represent conditional probability.
Bonds %>%
    ggplot() + aes(x = Risk, fill = Fees) + geom_bar(position = "fill")
