Maps

Philadelphia Parking Tickets: a tidyTuesday

Philadelphia Map Use ggmap for the base layer. library(ggmap); library(osmdata); library(tidyverse) PHI <- get_map(getbb("Philadelphia, PA"), maptype = "stamen", zoom=12) Get the Tickets Data TidyTuesday covers 1.26 million parking tickets in Philadelphia. tickets <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-12-03/tickets.csv") ## Parsed with column specification: ## cols( ## violation_desc = col_character(), ## issue_datetime = col_datetime(format = ""), ## fine = col_double(), ## issuing_agency = col_character(), ## lat = col_double(), ## lon = col_double(), ## zip_code = col_double() ## ) Two Lines of Code Left library(lubridate); library(ggthemes) tickets <- tickets %>% mutate(Day = wday(issue_datetime, label=TRUE)) # use lubridate to extract the day of the month.

US Census Mapping

Searching and Mapping the Census Searching for the Asian Population via the Census To use tidycensus, there are limitations imposed by the available tables. There is ACS – a survey of about 3 million people – and the two main decennial census files [SF1] and [SF2]. I will search SF1 for the Asian population. library(tidycensus); library(kableExtra) library(tidyverse); library(stringr) v10 <- load_variables(2010, "sf1", cache = TRUE) v10 %>% filter(str_detect(concept, "ASIAN")) %>% filter(str_detect(label, "Female")) %>% kable() %>% scroll_box(width = "100%") name label concept P012D026 Total!

Simple Oregon County Mapping

Some Data for the Map I want to get some data to place on the map. I found a website with population and population change data for Oregon in .csv format. I cannot direct download it from R, instead I have to button download it and import it. library(tidyverse) ## ── Attaching packages ────────────────────────── tidyverse 1.3.0 ── ## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3 ## ✓ tibble 2.1.3 ✓ dplyr 0.

tidyTuesday does Pizza

Pizza Ratings The #tidyTuesday for this week involves pizza shop ratings data. Let’s see what we have. pizza_jared <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-10-01/pizza_jared.csv") ## Parsed with column specification: ## cols( ## polla_qid = col_double(), ## answer = col_character(), ## votes = col_double(), ## pollq_id = col_double(), ## question = col_character(), ## place = col_character(), ## time = col_double(), ## total_votes = col_double(), ## percent = col_double() ## ) pizza_barstool <- readr::read_csv("https://raw.

fredr is very neat

FRED via fredr The Federal Reserve Economic Database [FRED] is a wonderful public resource for data and the r api that connects to it is very easy to use for the things that I have previously needed. For example, one of my students was interested in commercial credit default data. I used the FRED search instructions from the following vignette to find that data. My first step was the vignette for using fredr.

Mapping with the Government Finance Database

The Government Finance Database Some of my colleagues (Kawika Pierson, Mike Hand, and Fred Thompson) have put together a convenient access point for the Government Finance data available from the Census. They published an article in PLoS One with the rationale; I want to build some maps from their project with extensible code and functions. The overall dataset is enormous. I have downloaded the whole thing and filtered out the states.